Электронная библиотека

ЭЛЕКТРОННАЯ БИБЛИОТЕКА






Добро пожаловать на сайт электронной библиотеки!
Здесь можно найти произведения русских и зарубежных авторов.
Скачать множество книг и журналов различных жанров и направлений.
Большой выбор художественной, бизнес, учебной и технической литературы.
Все представленные здесь книги и журналы имеют подробное описание и обложку.
Наша библиотека регулярно пополняется только новыми и интересными материалами!

«Подробнее о сайте»            «Правила сайта»            «Написать нам»            «Статьи»

Высшая математика. Гуманитарные специальности

Наука и познание >> Математика





Разместил: Gunpowder

24-09-2013, 16:14

Просмотров: 346





Высшая математика. Гуманитарные специальности

Высшая математика. Гуманитарные специальности - В книге изложен курс высшей математики для студентов, специализирующихся в области гуманитарных наук. Подробно освещены разделы математики, относящиеся к теории конечных и бесконечных множеств, алгебраических структур, чисел и операций с ними, функциям. Изложены темы, посвященные классическому анализу. Дан подробный исторический очерк развития математики.


Название: Высшая математика. Гуманитарные специальности
Автор: Дорофеева А. В.
Издательство: Дрофа
Год: 2003
Страниц: 384
Формат: PDF
Размер: 14,6 МБ
ISBN: 5-7107-6233-4
Качество: Отличное
Язык: Русский


Содержание:

   Предисловие
   Введение
   Математические обозначения
   Латинский алфавит
   Греческий алфавит
Глава 1. Множества
1.1. Понятие множества
1.2. Сумма множеств
1.3. Произведение множеств
1.4. Подмножества
1.5. Сравнение свойств операций с множествами и операций с числами
1.6. Дополнение множества
1.7. Разбиение множества
1.8. Прямое произведение двух множеств
1.9. Бинарные отношения
1.10. Связь между отношением эквивалентности и разбиением множества на классы
Глава 2. Функции
2.1. Определение функции. Связь с бинарными отношениями
2.2. Свойства функций
2.3. Обратные функции
2.4. Суперпозиция функций
2.5. Взаимно-однозначное соответствие между двумя множествами
Глава 3. Алгебраические структуры
3.1. Операции
3.2. Свойства операций
3.3. Определение группы
3.4. Свойства коммутативной группы с операцией сложения
3.5. Операции с множествами. Симметрическая разность
3.6. Кольцо. Поле
Глава 4. Числа и операции с ними
4.1. Натуральные числа
4.2. Кольцо целых чисел
4.3. Поле рациональных чисел
4.4. Поле действительных чисел. Непрерывность числовой оси
4.5. Комплексные числа
4.6. Векторы
Глава 5. Числовые функции
5.1. Понятие расстояния. Метрические пространства
5.2. Расстояние между точками числовой оси
5.3. Свойства точечных множеств на числовой оси
5.4. Определение числовой функции. Различные способы ее задания
5.5. Операции на множестве числовых функций
5.6. Класс элементарных функций
5.7. Последовательность - функция натурального аргумента
Глава 6. Теория пределов
6.1. Вводные замечания о пределе переменной величины
6.2. Бесконечно малые. Теоремы о бесконечно малых
6.3. Предел последовательности
6.4. Бесконечно большие величины. Их связь с бесконечно малыми
6.5. Признаки существования предела последовательности
6.6. Число е. Понятие о натуральных логарифмах
6.7. Предел функции
6.8. Раскрытие неопределенностей
6.9. Предел отношения синуса бесконечно малой дуги к самой дуге
6.10. Сравнение бесконечно малых
Глава 7. Непрерывность и разрывы функций
7.1. Определение непрерывности функции. Типы разрывов
7.2. Приращения аргумента и функции. Второе определение непрерывности
7.3. Операции с непрерывными функциями
7.4. Свойства непрерывных функций
Глава 8. Производная
8.1. Задача нахождения скорости движения
8.2. Определение производной
8.3. Задача проведения касательной к кривой. Геометрический смысл производной
8.4. Связь между непрерывностью и существованием производной
8.5. Нахождение производных от основных элементарных функций
8.6. Правила вычисления производной от суммы, произведения и частного
8.7. Производная от обратной функции. Производные от функций у = аx, у = arcsin х, у= arccos х, у = arctg х
8.8. Производная от функции у = f [φ(x)]. Понятие о производных высших порядков
Глава 9. Приложения производной. Дифференциал. Формула Тейлора
9.1. Теорема Лагранжа о конечном приращении функции
9.2. Признаки возрастания и убывания функции
9.3. Экстремум функции
9.4. Построение графика функции
9.5. Дифференциал функции
9.6. Формула Тейлора
Глава 10. Неопределенный интеграл
10.1. Задача, обратная дифференцированию. Первообразные функции
10.2. Неопределенный интеграл и его свойства
10.3. Составление таблицы неопределенных интегралов
10.4. Методы вычисления неопределенных интегралов
10.5. Теорема существования неопределенного интеграла. Интегралы, не выражающиеся
через элементарные функции
Глава 11. Определенный интеграл
11.1. Определение площади криволинейной трапеции
11.2. Определенный интеграл
11.3. Связь между неопределенным и определенным интегралами
11.4. Свойства определенного интеграла
11.5. Геометрические приложения определенного интеграла
11.6. Несобственные интегралы
Глава 12. Бесконечные ряды
12.1. Определение числового ряда и его суммы. Необходимый признак сходимости ряда
12.2. Ряды с положительными членами
12.3. Знакочередующиеся ряды. Теорема Лейбница
12.4. Сходимость произвольных рядов. Условная и абсолютная сходимость
12.5. Функциональные ряды. Область сходимости. Степенные ряды
12.6. Ряд Тейлора
12.7. Приложения теории бесконечных рядов
Глава 13. Теория вероятностей
13.1. Предмет теории вероятностей. Случайные события
13.2. Определения вероятности
13.3. Вероятность суммы несовместных событий
13.4. Теорема умножения вероятностей. Вероятность суммы совместных событий
13.5. Формула полной вероятности. Формулы Байеса
13.6. Элементы комбинаторики
13.7. Формула Бернулли
13.8. Случайная дискретная величина и ее закон распределения
13.9. Математическое ожидание дискретной случайной величины и его основные свойства
13.10. Дисперсия и ее свойства
13.11. Закон больших чисел
13.12. Непрерывные случайные величины. Интегральная функция распределения
13.13. Дифференциальная функция распределения. Числовые характеристики непрерывной случайной величины
13.14. Равномерное распределение
13.15. Нормальное распределение
Глава 14. Теория бесконечных множеств. Проблемы оснований математики
14.1. Равномощность двух бесконечных множеств
14.2. Счетные множества
14.3. Счетность множества рациональных чисел
14.4. Мощность континуума
14.5. Определение бесконечного множества
14.6. Сравнение мощностей. Существование сколь угодно больших мощностей
14.7. Кардинальные числа
14.8. Парадоксы теории множеств и проблемы оснований математики
Глава 15. Исторический очерк развития математики
15.1. Период зарождения математики
15.2. Математика в Древней Греции
15.3. Математика средневекового Востока
15.4. Математика европейского Средневековья и эпохи Возрождения
15.5. Создание математики переменных величин
15.6. Развитие математики в XVIII в
15.7. Проблемы обоснования математики переменных величин
15.8. Период современной математики
Литература
Именной указатель


Скачать Высшая математика. Гуманитарные специальности









Похожие публикации

Высшая математика на базе Mathcad. Общий курс Высшая математика на базе Mathcad. Общий курс
Высшая математика на базе Mathcad. Общий курс - Учебное пособие охватывает следующие разделы высшей математики: дифференциальное и интегральное исчисление, дифференциальные уравнения, ряды, линейная алгебра и элементы аналитической геометрии, а

Теория вероятностей в задачах и упражнениях Теория вероятностей в задачах и упражнениях
Теория вероятностей в задачах и упражнениях - Учебное пособие содержит задачи по всем разделам теории вероятностей, изучаемым в технических университетах и институтах, а также решения наиболее важных задач; практически ко всем задачам приведены

Занимательная математика. Множества и отношения Занимательная математика. Множества и отношения
Занимательная математика. Множества и отношения - Книга в занимательной форме вводит читателя в мир математики и логики. Она адресована всем, кто любит поразмышлять и интересуется головоломками и парадоксами. Материал первой части изложен в форме

Справочник по математике. Основные понятия и формулы Справочник по математике. Основные понятия и формулы
Справочник по математике. Основные понятия и формулы - Приводятся основные понятия и формулы курсов элементарной и высшей математики. Материал систематизирован в соответствии с логикой предметов. Для учащихся общеобразовательных и средних

Дифференциальное и интегральное исчисление функций одного аргумента Дифференциальное и интегральное исчисление функций одного аргумента
Дифференциальное и интегральное исчисление функций одного аргумента - Учебник содержит основные сведения по дифференциальному и интегральному исчислению (функции, пределы, производные, интегралы, ряды), без которых невозможно изучение как

Высшая математика. Мини-справочник для вузов Высшая математика. Мини-справочник для вузов
Высшая математика. Мини-справочник для вузов - Данный мини-справочник предназначен для студентов гуманитарных факультетов высших учебных заведений при подготовке и сдаче экзаменов по высшей математике.

Математика 7-11 Класс. Обучающий видеокурс (2011) Математика 7-11 Класс. Обучающий видеокурс (2011)
"Математика 7-11 Класс. Обучающий видеокурс" – это 17 часов и 199 уроков озвученного интерактивного видеоматериала. Представлены все разделы алгебры от простых функций до математического анализа, все разделы геометрии от простых фигур до тел

В.С.Шипачев. Высшая математика. 4-е издание В.С.Шипачев. Высшая математика. 4-е издание
4-е издание, стереотипное. Теория + множество примеров. Изложены элементы теории множеств и вещественных чисел, числовые последовательности и теория пределов, аналитическая геометрия на плоскости и в пространстве, основы дифференциального и

Бугров Я.С., Никольский С.М. Высшая математика. В 3-х томах Бугров Я.С., Никольский С.М. Высшая математика. В 3-х томах
Т.1. Элементы линейной алгебры и аналитической геометрии. Т.2. Дифференциальное и интегральное исчисление. Т.3. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. В первом томе содержатся основные сведения по

Математика для студентов и школьников. Обучающий видеокурс Математика для студентов и школьников. Обучающий видеокурс
Изначально данный видеокурс по математике предназначался для студентов юридических вузов, но практика показала, что он будет полезен любому студенту, а также старшеклассникам. В курсе рассмотрены следующие темы: числа, первичная обработка




Отзывы и Комментарии





Добавление комментария

Ваше Имя:
Ваш E-Mail:(необязательно)
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent

Книги




Союз образовательных сайтов