Электронная библиотека

ЭЛЕКТРОННАЯ БИБЛИОТЕКА






Добро пожаловать на сайт электронной библиотеки!
Здесь можно найти произведения русских и зарубежных авторов.
Скачать множество книг и журналов различных жанров и направлений.
Большой выбор художественной, бизнес, учебной и технической литературы.
Все представленные здесь книги и журналы имеют подробное описание и обложку.
Наша библиотека регулярно пополняется только новыми и интересными материалами!

«Подробнее о сайте»            «Правила сайта»            «Написать нам»            «Статьи»

Коммутативная алгебра (в 2-х томах)

Математика >> Естественные науки





Разместил: lara17

19-07-2012, 10:25

Просмотров: 564





Коммутативная алгебра (в 2-х томах)

Название: Коммутативная алгебра (в 2-х томах)
Автор: Зарисский О., Самюэль П.
Издательство: Издательство иностранной литературы
Год издания: 1963
Формат: DjVu
Язык: русский
Cтраниц: 820
Размер: 10 МБ


Описание: За последние десятилетия под влиянием ряда разделов современной математики, таких, как алгебраическая геометрия и другие, интенсивно развивалась теория коммутативных колец и полей. Данным разделом алгебры и посвящена эта обстоятельная монография. Изложение открывается основными понятиями современной алгебры (группы, кольца и поля), начиная от самых первоначальных сведений до основной теоремы теории Галуа. Остальная часть первого тома монографии посвящена общей теории коммутативных колец и охватывает наряду с классическими результатами многие факты, найденные и самые последние годы и освещавшиеся до сих пор лишь в журнальных статьях. Во втором томе подробно исследуются кольца специальных типов: кольца нормировании, кольца полиномов и степенных рядов и локальные кольца. Книга может служить учебным пособием и основой для специальных курсов по важным разделам современной алгебры и предполагает очень малую предварительную подготовку.


СОДЕРЖАНИЕ ТОМОВ:
1 ТОМ

От редактора перевода 5
Предисловие 7
Глава I. Вводные понятия 11
§ 1. Бинарные операции 11
§ 2. Группы 13
§ 3. Подгруппы 15
§ 4. Абелевы группы 17
§ 5. Кольца 18
§ 6. Кольца с единицей 19
§ 7. Степени и кратные 20
§ 8. Поля 21
§ 9. Под кольца и под поля 21
§ 10. Преобразования и отображения 23
§11. Гомоморфизмы групп 25
§ 12. Гомоморфизмы колец 28
§ 13. Отождествление колец 31
§ 14. Области с однозначным разложением на множители 33
§ 15. Евклидовы области 35
§ 16. Полиномы от одной неизвестной 37
§ 17. Кольца полиномов 40
§ 18. Полиномы от нескольких неизвестных 47
§ 19. Поля частных и полные кольца частных 56
§ 20. Кольца частных относительно мультипликативных систем 61
§ 21. Векторные пространства 64
Глава II. Элементы теории полей 71
§ 1. Расширения полей 71
§ 2. Алгебраические величины 71
§ 3. Алгебраические расширения 76
§ 4. Характеристика поля 78
§ 5. Сепарабельные и несепарабельные алгебраические расширения 81
§ 6. Поля разложения и нормальные расширения 89
§ 7. Основная теорема теории Галуа 99
§ 8. Поля Галуа 101
§ 9. Теорема о примитивном элементе 103
§ 10. Характеристические полиномы поля. Нормы и следы 105
§11. Дискриминант 112
§ 12. Трансцендентные расширения 115
§ 13. Сепарабельно порождаемые поля алгебраических функций 122
§ 14. Алгебраически замкнутые поля 127
§ 15. Линейная свобода и сепарабельность 130
§ 16. Порядок несепарабельности поля алгебраических функций 135
§ 17. Дифференцирования 142
Глава III. Идеалы и модули 156
§ 1. Идеалы и модули 156
§ 2. Операции над подмодулями 160
§ 3. Операторные гомоморфизмы и фактормодули 162
§ 4. Теоремы об изоморфизме 165
§ 5. Гомоморфизмы кольца и факторкольца 166
§ 6. Порядок подмножества модуля 169
§ 7. Операции над идеалами 171
§ 8. Простые и максимальные идеалы 174
§ 9. Примерные идеалы 178
§ 10. Условия конечности 181
§11. Композиционные ряды 185
§12. Прямые суммы 191
§ 12'. Бесконечные прямые суммы 200
§ 13. Комаксимальные идеалы и прямые суммы идеалов 203
§ 14. Тензорные произведения колец 208
§ 15. Свободные композиты областей целостности (или полей) 217
Глава IV. Нётеровы кольца 229
§ 1. Определения. Теорема Гильберта о базисе 229
§ 2. Кольца с условием обрыва убывающих цепей 233
§ 3. Примарные кольца 235
§ 3'. Другой метод изучения колец с у. о. у. ц. 237
§ 4. Теорема Ласкера — Нётер о разложении 239
§ 5. Теоремы единственности 241
§ 6. Приложение: делители нуля и нильпотентные элементы 246
§ 7. Приложение: пересечение степеней идеала 248
§ 8. Расширенные и сокращенные идеалы 251
§ 9. Кольца частных 254
§ 10. Связь между идеалами кольца R и идеалами из RM 256
§11. Примеры и приложения колец частных 262
§ 12. Символические степени 266
§ 13. Длина идеала 268
§ 14. Простые идеалы в нётеровых кольцах 273
§ 15. Кольца главных идеалов 279
§ 16. Неприводимые идеалы 284
Добавление. Примарные представления в нётеровых модулях 289
Глава V. Дедекиндовы области. Классическая теория идеалов 292
§ 1. Целые элементы 292
§ 2. Целозависимые кольца 295
§ 3. Целозамкнутые кольца 298
§ 4. Теоремы конечности 303
§ 5. Кондуктор целого замыкания 308
§ 6. Характеристики дедекиндовых областей 309
§ 7. Дальнейшие свойства дедекиндовых областей 318
§ 8. Расширение дедекиндовых областей 322
§ 9. Разложение простых идеалов в расширениях дедекиндовых областей 324
§ 10. Группа разложения, группа инерции и группа ветвления 331
§11. Дифферента и дискриминант 339
§ 12. Приложения к квадратичным полям и полям деления круга 354
§ 13. Теорема Куммера 360
Указатель обозначений 364
Предметный указатель 366


2 ТОМ
От редактора перевода 5
Предисловие 7
Указания читателю 10
Глава VI. Теория нормирований 11
§ 1. Вводные замечания 11
§ 2. Точки поля 13
§ 3. Специализация точек 18
§ 4. Существование точек поля 22
§ 5. Центр точки поля в подкольце 28
§ 5'. Понятие центра точки в алгебраической геометрии 35
§ 6. Точки и расширения полей 39
§ 7. Случай алгебраического расширения полей 41
§ 8. Нормирования 47
§ 9. Точки и нормирования 50
§ 10. Ранг нормирования 56
§11. Нормирования и расширения полей 68
§ 12. Теория ветвления общих нормировании 87
§ 13. Классическая теория идеалов и нормировании 104
§ 14. Простые дивизоры в полях алгебраических функций 111
§ 15. Примеры нормировании 123
§ 16. Одна теорема существования для составных центрированных 130
нормировании
§ 17. Абстрактная риманова поверхность поля 135
§ 18. Производные нормальные модели 150
Глава VII. Кольца полиномов и степенных рядов 157
§ 1. Формальные степенные ряды 157
§ 2. Градуированные кольца и однородные идеалы 179
§ 3. Алгебраические многообразия в аффинном пространстве 191
§ 4. Алгебраические многообразия в проективном пространстве 199
§ 4'. Дальнейшие свойства проективных многообразий 205
§ 5. Связь между неоднородными и однородными идеалами 211
§ 6. Связь между аффинными и проективными многообразиями 220
§ 7. Теория размерности в конечной области целостности 225
§ 8. Специальные свойства полиномиальных колец в теории размерности 237
§ 9. Теоремы нормализации 244
§ 10. Теория размерности в кольцах степенных рядов 253
§11. Расширение основного поля 257
§ 12. Характеристические функции градуированных модулей и однородных идеалов 267
§ 13. Цепи сизигий 275
Глава VIII. Локальная алгебра 287
§ 1. Метод присоединенных градуированных колец 287
§ 2. Некоторые топологические понятия. Пополнения 290
§ 3. Элементарные свойства полных модулей 299
§ 4. Кольца Зарисского 302
§ 5. Сравнение топологий в нётеровом кольце 313
§ 6. Конечные расширения 320
§ 7. Лемма Гензеля и ее приложения 322
§ 8. Характеристические функции 329
§ 9. Теория размерности. Системы параметров 334
§ 10. Теория кратностей 340
§11. Регулярные локальные кольца 348
§ 12. Строение полных локальных колец и приложения теоремы об их строении 352
§ 13. Аналитическая неприводимость и аналитическая нормальность нормальных многообразий 363
Добавление 1. Соотношения между простыми идеалами р нётеровой 372
области о и ее простом расширении o(t]
Добавление 2. Нормирования в нётеровых областях 381
Добавление 3. Идеалы нормировании 392
Добавление 4. Полные модули и идеалы 400
Добавление 5. Кольца Мэколея 416
Добавление 6. Единственность разложения на множители в регулярных локальных кольцах 428
Предметный указатель 432









Похожие публикации

Вязание крючком. Видеоуроки [01-379 урок] (2012) WEBRip Вязание крючком. Видеоуроки [01-379 урок] (2012) WEBRip
Итак, начинаем вязать вместе. В этом нам помогут видео-уроки вязания крючком для начинающих. Ведь в одиночку по книгам это делать не только скучно, но и очень-очень долго. Пока там разберешься, что к чему, может 40 лет пройти! Я не шучу, именно

Математические основы структурного анализа кристаллов Математические основы структурного анализа кристаллов
На русском языке не существует геометрической кристаллографии, которая была бы написана не для минералогов, а для физиков и лиц, специализирующихся в структурном анализе материалов. Современный физик в вопросах, поддающихся математическому анализу,

Теория вероятностей и математическая статистика (43 выпуска) Теория вероятностей и математическая статистика (43 выпуска)
В раздаче представлены 43 выпуска популярной серии "Теория вероятностей и математическая статистика". (список и описание выпусков см.далее)

Термодинамика Термодинамика
В книге в доступной форме излагаются основы общей термодинамики, которая впервые органически объединяет в себе классическую термодинамику, термодинамику необратимых процессов, теорию теплопроводности, тепло- и массообмен и т.д. По сути дела эта

Расходящиеся ряды Расходящиеся ряды
Настоящая книга представляет собой монографию, посвященную суммированию расходящихся рядов. Она содержит обширный исторический обзор вопроса, краткое введение в общую теорию суммирования рядов и подробное исследование ряда конкретных методов

Русские авторы фэнтези Русские авторы фэнтези
Фэнтези отечественных авторов. Название говорит само за себя. Огромный сборник книг русского фэнтези Произведения отсортированы по авторам и сериям.

Бугров Я.С., Никольский С.М. Высшая математика. В 3-х томах Бугров Я.С., Никольский С.М. Высшая математика. В 3-х томах
Т.1. Элементы линейной алгебры и аналитической геометрии. Т.2. Дифференциальное и интегральное исчисление. Т.3. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. В первом томе содержатся основные сведения по

QuarkExpress 6. Обучающий видеокурс QuarkExpress 6. Обучающий видеокурс
Обучающий интерактивный курс по работе с одной из популярных программ для создания, редактирования и оформления текстовых документов QuarkXpress 6. Данный курс представляет собой мультимедийный комплекс для самостоятельного обучения работе с

Математика 7-11 класс. Мультимедийный самоучитель Математика 7-11 класс. Мультимедийный самоучитель
Человек сдает экзамены с древнейших времен, и ему всегда было знакомо чувство неуверенности и волнения перед этим важным событием. Ну и конечно всегда было известно, что как не велик процент случайности, как не велика помощь шпаргалок, подсказок и

Сборник лучших рефератов (1200 рефератов) Сборник лучших рефератов (1200 рефератов)
Сборник включает рефераты и сообщения, подобранные в соответствии со школьной программой, по основным учебным дисциплинам. Эти работы дадут учащимся богатый дополнительный материал для текущих занятий, тестовых проверок знаний, контрольных работ и




Отзывы и Комментарии





Добавление комментария

Ваше Имя:
Ваш E-Mail:(необязательно)
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent

Книги




Союз образовательных сайтов